N
I have painted the line from the data you supply us, and the point in question whose distance to the line you want to know. This is the look (the red point is the one you give with coordinates (-58.503015,-34.704488): As shown in the figure, the point you have given falls so that the shortest distance to the line coincides almost with the distance to an end of the line. The following figure zooms to that end, and paints in green the point you have found with your code (the value of the variable np(c): The green point falls above the end point of the curve, so it is not a good example to determine if you are calculating the distance to a given point, or to the straight that interpolates two points.Let's try instead with the coordinates point (-58.45,-34.68) that falls closer to the center of the curve.Yeah, using your same code but doing Punto equal to the value I just mentioned, we painted in red the point and in green its projection on the curve, we see that what you get is what you were looking for, the distance to the straight that links the points (as in fact p.distance(linea) returns the same result p.distance(np), except for rounding of floating comma).Look: UpdateThis is the code I've generated the graphics with. That's it. matplotlib, executed in a Jupyter Notebook.%matplotlib inline
from matplotlib import pyplot
from shapely.geometry import LineString, Point, LinearRing
Datos de entrada
Line = [(-58.39323087479187, -34.64522852285068), (-58.39493519860744, -34.64593911202303), (-58.39540370387294, -34.64612018963881), (-58.39577715270643, -34.64624297063709), (-58.3961720086682, -34.64636735300267), (-58.39657393244798, -34.64649079664271), (-58.39686900560828, -34.64658786576401), (-58.39768408267521, -34.64688376919202), (-58.39804117638568, -34.64699057960223), (-58.39811749931905, -34.64700849164973), (-58.39828903137601, -34.64704378391358), (-58.39848415993365, -34.64708122410398), (-58.3986547387477, -34.64709449060737), (-58.3988514934597, -34.64709955836587), (-58.39897325079004, -34.6471023653607), (-58.39913887311855, -34.64708744614302), (-58.40078230339798, -34.64694668280777), (-58.4011366548087, -34.64692373544752), (-58.40140137506319, -34.64690660901691), (-58.40169294994597, -34.64689298223946), (-58.40188791399491, -34.64691373562576), (-58.40216794959328, -34.64695369573664), (-58.41441599275006, -34.64898345419851), (-58.41468645364731, -34.64902341675737), (-58.41491789917437, -34.6490522244158), (-58.41504783372419, -34.64906712767555), (-58.41517069354625, -34.64908171429391), (-58.41533660567228, -34.64909137548982), (-58.41610344894117, -34.64910924442286), (-58.41663883920926, -34.64911070715178), (-58.41691994816962, -34.64910623905278), (-58.41712925394172, -34.64908282123896), (-58.41735140092969, -34.64905175937751), (-58.4175040105956, -34.64901464682342), (-58.41778163827102, -34.64893890857992), (-58.41810776345819, -34.64882463807892), (-58.42014859446244, -34.64801074189261), (-58.42109129459963, -34.64768468167974), (-58.42150738131538, -34.64755870865789), (-58.42342555778116, -34.64704856595483), (-58.42380036444368, -34.64696522849173), (-58.42402399498763, -34.64692538456899), (-58.42422994553617, -34.64689682578112), (-58.42442882836995, -34.64688048716456), (-58.42466544132492, -34.64686749516407), (-58.42492895224804, -34.64686969903472), (-58.42519118859626, -34.64689581060387), (-58.42548633816839, -34.64693076251233), (-58.42574834123136, -34.64696690278817), (-58.42600734692162, -34.64703299983701), (-58.42633487929256, -34.64713342399471), (-58.42672363380665, -34.6472903832091), (-58.42701863504796, -34.64744017525714), (-58.42735477118806, -34.64764714102999), (-58.42758954729708, -34.64780944247776), (-58.42780426987807, -34.64798874926387), (-58.42805931284784, -34.64825160891823), (-58.42826384085686, -34.64851328718624), (-58.42836837245316, -34.64865441916345), (-58.42849097552769, -34.64886100909527), (-58.42863862000018, -34.64921981114054), (-58.43039902344795, -34.65411150588781), (-58.43058099211167, -34.65454759092934), (-58.43074440690579, -34.65487960245804), (-58.43091147516467, -34.65519055733962), (-58.43112803380347, -34.65554914847827), (-58.43260609566938, -34.65801519415205), (-58.43278567440816, -34.65827265019357), (-58.43296016110701, -34.65845540315134), (-58.43315011877778, -34.65865061801186), (-58.43335842356506, -34.65885169235345), (-58.43349821535271, -34.65894935913921), (-58.43369231539262, -34.65907745659961), (-58.43391244522258, -34.65921105679707), (-58.4342196854351, -34.65939138210857), (-58.43446159367213, -34.65950262175289), (-58.4354319679709, -34.65989668701516), (-58.44002778106239, -34.66183363815986), (-58.44218397209216, -34.66275027310008), (-58.46163757545956, -34.67090968101208), (-58.46246050330255, -34.67120817614321), (-58.46280547898094, -34.67132107658005), (-58.46307488578911, -34.67139608443851), (-58.46332241010779, -34.67144991252323), (-58.46353300409209, -34.67149541798045), (-58.46859653017688, -34.67249959570204), (-58.46908781436287, -34.67259411624501), (-58.46938034898276, -34.67267684368898), (-58.46981999535013, -34.67282189408634), (-58.47017709131737, -34.67296547046871), (-58.47422872212128, -34.67473003403723), (-58.47458907678709, -34.67490463353656), (-58.47485536868304, -34.67507001487545), (-58.47511721636123, -34.67527809815956), (-58.47561611823835, -34.67573966172805), (-58.47637678148585, -34.67650147966764), (-58.4772898411353, -34.677473083393), (-58.47756878106423, -34.67779366716631), (-58.47927838887487, -34.68008637250686), (-58.4796189824651, -34.68046368453628), (-58.4797836819284, -34.68061589623475), (-58.47997298162954, -34.68077149644261), (-58.48013854950542, -34.68087214089938), (-58.48033951807771, -34.68099482470753), (-58.48077178430249, -34.68117907983302), (-58.4809809942354, -34.68125468946911), (-58.48151812211091, -34.68141121492266), (-58.49074865351113, -34.68364996209967), (-58.49280644305118, -34.68416717487745), (-58.49323181266317, -34.68430677581161), (-58.4939040130434, -34.68450404480966), (-58.494446444632, -34.68469758388901), (-58.50679022633284, -34.68987115611775), (-58.50863040256832, -34.6906581855909), (-58.51021336002367, -34.69130911057548), (-58.51092048468821, -34.69162906732615), (-58.51128148474532, -34.69180116103016), (-58.51164513166684, -34.69197626961216), (-58.51190552938787, -34.6921423269721), (-58.51223224913973, -34.6923465503359), (-58.51266317587315, -34.69263696928233), (-58.51283797439013, -34.69275574911642), (-58.51343928772994, -34.69323891435921), (-58.51613617076313, -34.69565149779803), (-58.51639524277449, -34.6959621229764), (-58.51657880735801, -34.69623621532357), (-58.51668736518741, -34.69648714304233), (-58.51677990482248, -34.69677220564932), (-58.51681912473175, -34.69694815217243), (-58.51683540541565, -34.69728978685934), (-58.51682586767205, -34.69757721116119), (-58.51679226699013, -34.697818097686), (-58.51670205772855, -34.69812198637412), (-58.51657448656194, -34.69837726193614), (-58.51643210417134, -34.69861385564264), (-58.51621815101113, -34.69887195886386), (-58.5160233966457, -34.69905049204797), (-58.51546229204164, -34.69948099921363), (-58.51164101129704, -34.70237114559549)]
Punto = (-58.45,-34.68)
Computar la proyección del punto sobre la línea
line = LineString(Line)
p = Point(Punto)
np = line.interpolate(line.project(p))
Función para pintar una serie de puntos en el color que se le pase como parámetro
def plot_coords(ax, ob, color='#999999'):
x, y = ob.xy
ax.plot(x, y, 'o', color=color, zorder=1)
Función para pintar una línea (irá superpuesta a los puntos)
def plot_line(ax, ob, color='#6699cc'):
x, y = ob.xy
ax.plot(x, y, color=color, alpha=0.7, linewidth=3, solid_capstyle='round', zorder=2)
Creación de la figura con matplotlib
fig = pyplot.figure(1, figsize=(6,6), dpi=90)
ax = fig.add_subplot(111)
Pintar la línea y los puntos que la componen
plot_line(ax, line)
plot_coords(ax, line)
Pintar en rojo el punto externo y en verde su proyección
plot_coords(ax, p, "red")
plot_coords(ax, np, "green")
ax.set_aspect(1)