How do you fix the inaccuracy of the row envelope to R?



  • options(scipen=999)
    options(digits=20)
    > v5=w$V5
    
    > v5
    

    [5] "0.01913037521495690000000000000000000 "0.01201045138062880000000" "0.01249622079025910000000 "0.0180209380912530000000."

    [13] "0.03722378016567200000000000000000" "0.00920251419434170000000000000000000000000" "0.00895343534382711000000000000000000000000000000000000000 "0.00126196986698644000000000000000000000000000000000000000000000000000000000000000
    [17] "0.000000000000000000000000000000000000000000000000000" "0.033342795214470000000000000000000000000000000000000000000000" "0.0047974748460279036000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
    [21] "0.02666058417619530000000000000000" "0.02777456834015240000000000000000000000000" "0.0062650721361072000000000000000000000000000000000000 "0.013697861370010000000000000000000000000000
    [25] "0.014311312638744000000000000000000000000" "0.000611934303274800000000000000000000000000" "0.11063108557783600000000000" "0.007304184970669000000000000000000000000000000000000000000000000000000000000000000000000000000000
    [29] "0.04216086961085650000000000000" "0.006618738127294000000000000000000000000" "0.02321049545406370000000000000000000000000000000000000000 "0.0286039368944805000000000000000000."
    [33] "0.00814081242847531000000000000000" "0.00767966671000000000000000000000" "0.00688016609413842000000000000000000000000000000 "0.03461042731932380000000."
    [37] "0.00984177026116521000000000000000000" "0.0054258025544122400000000000000000000000000000000000000000 "0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
    (41) "0.00953856033127113000000000000000000000000" "0.0000000000000000000000000000000000000000 "0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
    (45) "0.00000000000000000000000000000000000000000000" "0.004579226714437000000000000000000000000000000000000000" "0.00511194505909686000000000000000000000000000000000000000000.
    (49) "0.004638509523396400000000000000000000000000000000000000000000000000000000000000000 "0.0158321957894791000000000000."

    [57] "0.03879912932890770000000000000000000000" "0.00867717079752326000000000000000000000000000000" "0.00768562925540900000000 "0.05476620505621660000000000000000000000000000000000000000000000000000000000000000000000000000000000
    [61] "0.00944161555325990000000000000000000000" "0.00289253876401100000000 "0.0220735026000000000 "0.01005909365009900000000."
    [65] "0.000000000000000000000000000000000000000000000000000000000000000000000" "0.010811318005300000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
    [69] "0.019448686520065100000000000000" "0.0137639955156715000000000" "0.0106138405462234000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
    [73] "0.01545221754799480000000000000000000" "0.0532752371799626000000000000000000000000000000000000000000000000000000000 "0.0028153796264000000000000000000000000000000000000000000000000000000000000000000000000000
    [77]

    > v6=as.numeric(v5)
    > v6

    [1]
    [7]
    [13]
    [19]
    [25]
    [31] 0.02321049545406370096 0.0286039368944805000308140812847530979 0.0076796966671779690688016609413842021 0.03461042731932380268
    [37]
    [43]
    [49]
    [55]
    [61]
    [67]
    [73] 0.01545221754799479957 0.05327523717996260344 0.00000000000000 0.002815379624168640180708190176815232022

    > z=v5[1]
    > z

    [1] "0.00545364023412378000000000000000"

    > y=as.numeric(z)
    > y

    [1] 0.00545362341237803

    > i=v5[3]
    > i

    [1] "0.011796550217915000000000000000000000000000000

    > j=as.numeric(i)
    > j

    [1] 0.011796550217915

    After the envelope, I want y=0.00545364023412378 instead of 0.0054536402341237803

    Inaccurate conversion causes errors in further calculations. Is there any way to get the number that's in the line without losing?

    After the 16th 16th sign, after the comma, I took it all the same.

    > version
    _

    platform x86_64-w64-mingw32
    arch x86_64
    os mingw32
    system x86_64, mingw32
    status
    major 4
    minor 1.0
    year 2021
    05 month
    day 18
    svn rev 80317
    language R
    version.string R version 4.1.0 (2021-05-18)
    nickname Camp Pontanezen



  • I don't think it's the right thing to think that he's a model of the right calculations, and he's going to get another sof. This simple example shows that there is no paranormal precision (exceeding machine, limited dual-track representation of decimalized decimalities) that is, to say the least, not. введите сюда описание изображения



Suggested Topics

  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2